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1. Introduction

In 1987, Guo and Lakshmikantham [10] introduced the notion of coupled
fixed point for single-valued mappings. Pursuing this paper, Bhaskar and
Lakshmikantham [4] constructed some coupled fixed point theorems on ordered
metric spaces, by giving the concept of mixed monotone property. After that,
Lakshmikantham and Ciri¢ [21] extended the notion of mixed monotone property
to mixed g-monotone property and established coupled coincidence point results
using a pair of commutative mappings, which generalized the results of Bhaskar
and Lakshmikantham [4]. Succeeding it, in view of coupled coincidence point, the
notion of compatibility was introduced by Choudhury and Kundu [5], thenafter
they improve the results of Lakshmikantham and Ciri¢ [21] by using this notion.
As an application, these results used to study the existence and uniqueness of a
solution for a periodic boundary value problem associated with a first order
ordinary differential equation.

Hussain et al. [12] introduced a new concept of generalized compatibility of a pair
of mappings F, G:X?>—X and proved some coupled coincidence point results.
Subsequently, Erhan et al. [8], indicated that the results established in Hussain et
al. [12] can be derived from the coincidence point results in the existing literature.

On the other hand, Samet et al. [37] claimed that most of the coupled fixed point
theorems for single-valued mappings on ordered metric spaces are consequences of
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well-known fixed point theorems. Many results appeared on multidimensional
fixed point theory in different contexts including [2, 6-8, 13-20, 24, 25, 27-35, 38].
Let (X, d) be a metric space and T:X—X a self mapping. If (X, d) is complete and
T is a contraction, that is, there exists a constant ke[0, 1) such that
d(Tx, Ty) < kd(x,y), for all x,y € X,

then, by Banach contraction mapping principle, which is a classical and powerful
tool in nonlinear analysis, we know that T has a unique fixed point p and, for any
Xo€X, the Picard iteration {T"xo} converges to p. The Banach contraction mapping
principle has been generalized in several directions, One of these generalizations,
known as the Meir-Keeler fixed point theorem [26], has been obtained by replacing
the contraction condition (1) by the following more general assumption: for all £>0
there exists d(¢)>0 such that

x,yEXe<dxy) <e+d(e)=>d(Tx Ty) <e.
In [36], Samet established the coupled fixed points of mixed strict monotone
generalized Meir-Keeler operators and also established the existence and
uniqueness results for coupled fixed point. Berinde and Pecurar [3] obtained more
general coupled fixed point theorems for mixed monotone operators F:XxX—X
satisfying a generalized Meir-Keeler contractive condition.
Our main aim in this manuscript is to obtain coincidence point result for g-non-
decreasing mappings satisfying generalized Meir-Keeler contraction on ordered
metric spaces. Using obtained result, we demonstrate the formation of coupled
coincidence point result for generalized compatible pair of mappings. We obtain
the solution of Fredholm nonlinear integral equation to indicate the usefulness of
our result and also give an example. We generalize, modify, improve, sharpen and
enrich the results of Berinde and Pecurar [3], Bhaskar and Lakshmikantham [4],
Lakshmikantham and Ciri¢ [21], Meir and Keeler [26], Samet [36] and various
well-known results of the existing literature.

2. Preliminaries

Suppose X is a non-empty set. For any natural number n>2, let X» be the nth
Cartesian product XxXx...xX (n times). If g:X—X is any self mapping, if x€X, we
shall denote g(x) by gx.
Definition 1 [10]. Let F:X?>—X be a given mapping. An element (X, y)eX2 is called
a coupled fixed point of F if
F(x,y) =xand F(y,x) =y.
Definition 2 [4]. Let (X, <) be a partially ordered set. Suppose F:X?>—X be a given
mapping. We say that F has the mixed monotone property if for all x, yeX, we
have
X1, X2 € X, X1 < X2 = F(X1,¥) < F(X2,¥),
and
y1,Y2 € X,y1 S ¥z = F(x y1) = F(X, y2).
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Definition 3 [21]. Let F:X?>—X and g:X—X be given mappings. An element (X,
y)eX2 is called a coupled coincidence point of the mappings F and g if
F(x,y) = gxand F(y,x) = gy.
Definition 4 [21]. Let F:X?>—X and g:X—X be given mappings. An element (X,
y)EX2 is called a common coupled fixed point of the mappings F and g if
x = F(x,y) = gxandy = F(y,x) = gy.
Definition 5 [21]. The mappings F:X?>—X and g:X—X are said to be commutative
if
gF(x,y) = F(gx, gy), for all (x,y) € X2
Definition 6 [21]. Let (X, <) be a partially ordered set. Suppose F:X*—X and
g:X—X are given mappings. We say that F has the mixed g-monotone property if
for all x, yeX, we have
X1,X2 € X, 8X1 < 8x2 = F(x,y) S F(x2,y),
and
V1. Y2 €X,8y1 < 8y2 = F(xy1) > F(x,y2).
If g is the identity mapping on X, then F satisfies the mixed monotone property.
Definition 7 [5]. The mappings F:X?>—X and g:X—X are said to be compatible if
rll—golo d(gF(Xn: Yn): F(an, gYn)) =0
r{l—{go d(8F(¥n,Xn), F(8Yn, 8%n)) = 0,
whenever {x,} and {y.} are sequences in X such that
lim FGn, yn) = limgx, =
&i_{f}oF(yﬂ'Xn) = I{i_{glogyn =y, for some x,y € X.
Definition 8 [12]. Suppose that F, G:X?>—X are two mappings. F is said to be G-
increasing with respect to < if for all x, y, u, veX, with G(x, y)<G(u, v) we have
F(x, y)<F(u, v).
Definition 9 [12]. Let F, G:X?>—X be two mappings. We say that the pair {F, G} is
commuting if
F(G(x,¥),G(y,x)) = G(F(x,y),F(y,x)),forall x,y € X.
Definition 10 [12]. Suppose that F, G:X>—X are two mappings. An element (X,
y)eX2 is called a coupled coincidence point of mappings F and G if
F(x,y) = G(x,y) and F(y,x) = G(y, x).
Definition 11 [12]. Let (X, <) be a partially ordered set, F:X?>—X and g:X—X are
two mappings. We say that F is g-increasing with respect to < if for any x, yeX,
gx1 < gx, implies F(X4,y) < F(X2,¥),
and
gy1 < gy. implies F(x,y1) < F(X,y2).
Definition 12 [12]. Let (X, <) be a partially ordered set, F:X?*—X be a mapping.
We say that F is increasing with respect to < if for any x, yeX,
X1 X Xz implies F(x4,y) < F(x2,¥),
and
y1 < yz implies F(x,y1) < F(x,y2).
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Definition 13 [12]. Let F, G:X?—X be two mappings. We say that the pair {F, G}
is generalized compatible if

1111_1)1;10 d(F(G(Xn, ¥n), G(¥n, Xn)), G(F(Xn, ¥n), F(¥yn, Xn))) = 0
111_1:210 d(F(G(Yn' Xn)r G(Xp, Yn))r G(F(Yn' Xn)r F(Xn' YH))) =0,
whenever (x») and (yn) are sequences in X such that
“_I};IOG(XH'Yn) = li_I)TgOF(Xn' Yn) =X,
r%i_r)gloG(yn?xn) = r{i_r)gloF(yn,nxn) =y, for somex,y € X.

Obviously, a commuting pair is a generalized compatible but not conversely in
general.
Definition 14 [1, 9]. A coincidence point of two mappings T, g:X—X is a point
X€eX such that Tx=gx.
Definition 15 [8]. An ordered metric space (X, d, <) is a metric space (X, d)
provided with a partial order <.
Definition 16 [4, 12]. An ordered metric space (X, d, <) is said to be non-
decreasing-regular (respectively, non-increasing-regular) if for every sequence
{x}=X such that {x,}—x and x,<Xn+1 (respectively, x,=xn+1) for all n, we have
that x,<x (respectively, x,=x) for all n. (X, d, <) is said to be regular if it is both
non-decreasing-regular and non-increasing-regular.
Definition 17 [8]. Let(X, <) be a partially ordered set and let T, g:X—X be two
mappings. We say that T is (g, <)-non-decreasing if Tx<Ty for all x, yeX such
that gx=<<gy. If g is the identity mapping on X, we say that T is <-non-decreasing.
Remark 18 [8]. If T is (g, <)-non-decreasing and gx=gy, then Tx=Ty. It follows
that

gx=gy=>{gx<gygysgx}=>{Tx< Ty Ty Tx} = Tx = Ty.
Definition 19 [8]. Let (X, <) be a partially ordered set and endow the product
space X2 with the following partial order:

(u,v) E(x,y) ©x>uandy < v, forall (u,v), (x,y) X2 (D

Definition 20 [5, 11, 23, 25]. Let (X, d, <) be an ordered metric space. Two
mappings T, g:X—X are said to be O-compatible if

lim d(gTx,, Tgx,) =0,

n—-oo
provided that {x»} is a sequence in X such that {gx»} is <-monotone, that is, it is
either non-increasing or non-decreasing with respect to < and

lim Tx, = lim gx, € X.

n—-oo n—-oo
Lemma 21 [38]. Let (X, d) be a metric space. Suppose Y=X2 and define A,
XnxXn—[0, +o0), for A=(ay, ay, ..., an), B=(by, by, ..., bn)EX®, by

1
An(A,B) = X, d(ay, by). )
Then A, is metric on X® and (X, d) is complete if and only if (X, Ay) is complete.
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3. Main results
Theorem 22. Let (X, d, <) be an ordered metric space and let T, g:X—X be two
mappings such that the following properties are fulfilled:
(i) T(X)=g(X),
(i) T is (g, <)-non-decreasing,
(iii) there exists xo€X such that gxo<TXo,
(iv) for each £>0, there exists d()>0 such that
e<d(gx,gy) <e+8(e) =d(Tx, Ty) < ¢,

for all x, yeX such that gx<gy. Also assume that, at least, one of the following
conditions holds.
(@) (X, d) is complete, T and g are continuous and the pair (T, g) is O-compatible,
(b) (X, d) is complete, T and g are continuous and commuting,
(c) (g(X), d) is complete and (X, d, <) is non-decreasing-regular,
(d) (X, d) is complete, g(X) is closed and (X, d, <) is non-decreasing-regular,
(e) (X, d) is complete, g is continuous and monotone-non-decreasing, the pair (T,
g) is O-compatible and (X, d, <) is non-decreasing-regular.
Then T and g have, at least, a coincidence point.
Proof. We divide the proof into four steps.
Step 1. We claim that there exists a sequence {X,}<X such that {gx.} is <-non-
decreasing and gxn+1=TXy, for all n>0. Starting from x,€X given in (iii) and taking
into account that Tx,e T(X)<g(X), there exists x;€X such that TX,=gX;. Then
OXo=TXo=0X;y. Since T is (g, <)-non-decreasing, Txo<Tx;. Now Tx;€T(X)=g(X),
so there exists x,€X such that Tx;=gx,. Then gx;=Txe<TX;=gX,. Since T is (g,
<)-non-decreasing, Tx;<TX,. Repeating this argument, there exists a sequence
{Xn}n=0 such that {gxn} is <-non-decreasing, gXn+1=TXn<TXn+1=gXn+2 and

gXn41 = TXy foralln > 0. 3
Step 2. We claim that {d(gxn, gXn-1)}—0. Now, by (24), for each >0, there exists
d(€)>0 such that

e<d(gx,gy) <e+8(e) = d(Tx, Ty) < &. (4)
Condition (4) implies the strict contractive condition
d(Tx, Ty) < d(gx, gy), ()

for all x, yeX such that gx<gy. Thus, by (5), we have

d(8Xn4+1,8%n) = d(Txy, Txp_1) < d(gXp, 8Xn-1),

which shows that the sequence of nonnegative numbers {a,, },,>¢ given by
. M = d(gXn, 8Xn-1), (6)
is non-increasing. Therefore, there exists some €>0 such that

lima, = lim d(gxy, gxp_1) = &

n—»>oo n—oo
We shall prove that e=0. Suppose, to the contrary, that €>0. Then there exists a
positive integer p such that

e<ap <e+8(e) = d(Txp, Txp_1) <,

it follows, by (3), that

Op+1 = d(gxp+1'gxp) <g,
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which is a contradiction. Thus €=0 and hence
lima, = limd(gx,, gx,—1) = 0. (7
n—.o0

n—oo

Step 3. We claim that {gx,}n>0 is a Cauchy sequence in X. Let now £>0 be
arbitrary and d(¢) the corresponding value from the hypothesis of our theorem. By
(7), there exists a positive integer k such that

Q1 = d(8Xk+1, 8Xk) < 6(€). 8
For this fixed number k, consider now the set Ax={gxeX:gxk<gX, d(gxx,
gx)<e+d6(g)}. By (8), Axtp. We claim that

gx € Ay = Tx € Ay. 9)
Let gx€Ax. Then
d(gxy, gx) < € + 6(e) = d(Txy, Tx) < €. (10)

Now, by (3), (8) and (10), we have
d(gxy, Tx) < d(gxy, Txy) + d(Txy, Tx)
< d(gxy, gXke1) + d(Txy, Tx) < €+ §(¢).
Thus TxeAx. Again
d(gxy, gXk+1) < d(gxy, TX) + d(TX, gx41) < 2(g +6(€)).
Thus gxk+1€Ak and by induction,
gx, € Ay, foralln > k.
This implies that for all n, m>k, we have
d(gxn, 8Xm) < d(8xy, 8Xk) + d(8Xk, 8xXm) < 2(€ + 8(¢)) = 4e.
This shows that {gx, },=¢ IS @ Cauchy sequence in X.
Step 4. We claim that T and g have a coincidence point distinguishing between
cases (a)-(e).
Suppose now that (a) holds, that is, (X, d) is complete, T and g are continuous and
the pair (T, g) is O-compatible. Since (X, d) is complete, therefore there exists zeX
such that {gxn}— z. Now Tx,=gXn+1 for all n, we also have that {Tx,}—z. As T
and g are continuous, then {Tgx,}—Tz and {ggxn}—gz. Since the pair (T, g) is O-
compatible, we have lim,_.d(gTxn, Tgxn)=0. In such a case, we conclude that d(gz,
Tz)=limy—d(9gXn+1, TgXn)=lima—d(gTXn, TgXn)=0, that is, z is a coincidence point
of T and g.
Suppose now that (b) holds, that is, (X, d) is complete, T and g are continuous and
commuting. Clearly (b) implies (a).
Suppose now that (c) holds, that is, (g(X), d) is complete and (X, d, <) is non-
decreasing-regular. As {gxn} is a Cauchy sequence in the complete space (g(X), d),
so there exist yeg(X) such that {gx,}—y. Let z€X be any point such that y=gz. In
this case {gxn} —gz. Indeed, as (X, d, <) is non-decreasing-regular and {gxn} is <-
non-decreasing and converging to gz, we deduce that gx,<gz for all n>0. Applying
the contractive condition (iv), d(gXn+1, Tz)<d(TXn, Tz)<d(gXn, gz). Taking n—oo,
we get d(gz, Tz)=0, that is, z is a coincidence point of T and g.
Suppose now that (d) holds, that is, (X, d) is complete, g(X) is closed and (X, d, <)
is non-decreasing-regular. It follows from the fact that a closed subset of a
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complete metric space is also complete. Then, (g(X), d) is complete and (X, d, <)
is non-decreasing-regular. Clearly (d) implies (c).
Suppose now that (e) holds, that is, (X, d) is complete, g is continuous and
monotone-non-decreasing, the pair (T, g) is O-compatible and (X, d, <) is non-
decreasing-regular. As (X, d) is complete, so there exists zeX such that {gx.}— z.
Since Txn=gxn+1 for all n, we also have that {Tx,}—z. As T and g are continuous,
then {Tgxn}—Tz and {ggxn}—gz. Since the pair (T, g) is O-compatible, therefore
limud(gTXn, Tgxn)=0. Thus, we conclude that d(gz, Tz)=lima_.d(ggXn+1,
Tgxn)=lim,—.d(gTXs, Tgxn)=0, that is, z is a coincidence point of T and g. Again,
as (X, d, <) is non-decreasing-regular and {gx»} is =<-non-decreasing and
converging to gz, we deduce that gx,<gz for all n>0. Applying the contractive
condition (iv), d(gXn+1, Tz)<d(Txn, Tz)<d(gxn, gz). Taking n—oo, we get d(gz,
Tz)=0, that is, z is a coincidence point of T and g.
Next, we formulate the coupled version of Theorem 22. Consider the ordered
metric space (X2, A, E), where A, was defined in Lemma 21 and = was
introduced in (1). Define the mappings Te, Te:X?—X2, for all (x, y)EXZ, by
Te(xy) = (F(x,y), F(y,x)) and Ts(x,y) = (G(x,y), G(Y,x)).

Under these conditions, the following properties hold:
Lemma 23. Let (X, d, <) be an ordered metric space and let F, G:X*—X be two
mappings. Then
(1) (X, d) is complete if and only if (X2, A;) is complete.
(2) If (X, d, <) is regular, then (X2, A,, E) is also regular.
(3) If F is d-continuous, then Tr is A,-continuous.
(4) If Fis G-increasing with respect to <, then Tr is (Ts, £)-non-decreasing.
(5) If there exist two elements X,, Yo €X With G(Xo, Yo)<F(Xo, Yo) and G(yo,
Xo)Z=F (Yo, Xo), then there exists a point (Xq, Yo)EX2 such that Te(Xo, Yo)ETe(Xe, Yo)-
(6) For any x, yeX, there exist u, veX such that F(x, y)=G(u, v) and F(y, X)=G(v,
u), then Te(X?)STs(X2).
(7) For each £>0, there exists 6(€)>0 such that

. < d(G(x,y), G(u,v)) + d(G(y, x), G(v,u))

- 2

< e+ 6(e),
implies
dFxy) F(u,v) + dFG %) Fvw)

)

2

for all x, y, u, veX, where G(x, y)<G(u, v) and G(y, x)=G(v, u), then

e < A(To(x,y), Tg(u,v)) < e+ 8(e) = A(Tr(x,y), Tr(u,v)) < g,
for all (x, y), (u, V)EX?, where Tg(X, Y)ETs(u, V).
(8) If the pair {F, G} is generalized compatible, then the mappings Tr and T¢ are
O-compatible in (X2, A, E).
(9) A point (X, y)eX2 is a coupled coincidence point of F and G if and only if it is a
coincidence point of Trand Te.
Proof. Item (1) follows from Lemma 21 and items (2), (3), (5), (6) and (9) are
obvious.
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(4) Assume that F is G-increasing with respect to < and let (%, y), (u, V)EX2 be
such that Te(Xx, Y)ETs(u, V). Then G(x, y)<G(u, v) and G(y, X)=G(v, u). Since F is
G-increasing with respect to <, therefore F(x, y)<F(u, v) and F(y, X)=F(v, u). So
Tr(X, Y)ETk(u, v), which means that Tr is (Ts, E)-non-decreasing.
(7) For each £>0, there exists 6(€)>0 such that
o < 4G6x ), G v)) + d(G(y, x), GV, w))
- 2

<e+5(e),

implies
d(F(xy) Fv)+d(Fyx) Fvw) . (11)

2
for all x, y, u, veX, where G(X, y)<G(u, v) and G(y, x)=G(v, u) and let (x, y), (u,
V)EX2 be such that Te(X, Y)ETs(u, v) and e<A,(Ts(X, ¥), Toe(u, v))<e+d(e).
Therefore G(X, y)<G(u, v) and G(y, X)=G(v, u) and
. < d(G(x,y), G(u,v)) + d(G(y, x), G(v,u))
- 2

< e+ 6(¢),
Using (11), we have

dFEY) Fuv)+dFy.x).F(v,u) <« (12)

2 ’
Thus, it follows from (12) that
A (TF(x,y), TF(u, v))
= 8, ((FCx y), F(3,), (F(u,v), F(v, w))
_ dF&y) F(wv)) + d(F(y, x), F(v,u)) <.

)

2
(8) Let {(xn, Yn)}=X2? be any sequence such that Te(Xn, Yn)—(x, y) and Te(Xn,
VYn)—(X, y) (notice that we do not need to suppose that {Te(Xn, Yn)} is C-
monotone). Therefore,

; (F&EnYn) F(yn Xn)) = (X,y) = F(Xp, yn) = xand F(yp, x,) 2y,
an

(G(Xny Yn), GVn, Xn) = (%,Y) = G(Xp, ¥n) = xand G(yy, Xp) = V.
Therefore

li_I)EIOF(Xn, Yn) = li_r)goG(Xn: yn) =X €X
lim F(yn,r)l(n) = lim G(yn,r)l(n) =y€eX
Since the pair {F, G} ?;g“éneralized corrﬁ)o;tible, we have
lim d(F(G(xn, yn), Gn Xn)), G(F G, yn), F(Yn, Xn))) = 0,
lim d(F(G(yn, Xn), G(n, yn)), G(F(Yn, Xn), F(xn, yn))) = 0.
In particular
Illi_l)l;loAz(TGTF (Xn' Yn)r TFTG (Xn' Yn))
= Ili_l;gloAz(TG (F(xn' Yn)r F(Yn' Xn))' TF(G(Xn' Yn)r G(yn' Xn)))

— i (LS G F G 500 GF G ), Fin 302,
n—oo 2 (F(G(anYn)rG(anxn))rF(G(Yn'Xn)'G(Xn'Yn))))
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1
= lim (5) [4(GFGen, ), F T X)), F(G G, Y, G )

+d(G(F(yn, Xn), F(xn, yn)), F(G(yn, Xn), G(xn, yn)))] = 0.
Hence, the mappings Tr and T are O-compatible in (X2, A,, E).
Theorem 24. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G:XxX—X be two generalized compatible mappings
satisfying (11) such that F is G-increasing with respect to <, G is continuous and
has the mixed monotone property and there exist two elements Xg, Yo €X with
G(X0,¥0) < F(Xo,¥0) and G(yo,Xo) # F(Yo,Xo)-
Suppose that for any X, yeX, there exist u, veX such that
F(x,¥) = G(u,v) and F(y,x) = G(v,u). (13)
Also suppose that either
(a) F is continuous or
(b) (X, d, <) is regular.
Then F and G have a coupled coincidence point.
Proof. It is only require to use Theorem 22 to the mappings T=Tr and g=Tg in the
ordered metric space (X2, A,, ) by applying Lemma 21.
Corollary 25. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G:XxX—X be two commuting mappings satisfying (11)
and (13) such that F is G-increasing with respect to <, G is continuous and has the
mixed monotone property and there exist two elements Xq, Yo €X with
G(Xo, Yo)<F(Xo, Yo) and G(Yo, Xo)=F(Yo, Xo)-
Also suppose that either
(a) F is continuous or
(b) (X, d, <) is regular.
Then F and G have a coupled coincidence point.
Now we obtain the results without mixed g-monotone property of F.
Corollary 26. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F:X?>—X and g:X—X be two mappings such that F is g-
increasing with respect to < and for each €>0, there exists 6(¢)>0 such that

d(gx, + d(gy,
sS( (gx gu)2 (gy gV)>S€+8(£)’
implies

d(F(xy),F(uv))+d(F(y,x),F(v,u)) <e

(14)
2
for all x, y, u, veX, where g(x)<g(u) and g(y)>g(v). Suppose that F(X?)=g(X), g is
continuous and monotone increasing with respect to < and the pair {F, g} is
compatible. Also suppose that either
(a) F is continuous or
(b) (X, d, <) is regular.
If there exist two elements Xg, Yo€X with
gxo < F(Xo,¥0) and gyo > F(Yo, Xo).
Then F and g have a coupled coincidence point.
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Corollary 27. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F:X?>—X and g:X—X be two mappings such that F is g-
increasing with respect to < and satisfying (14). Suppose that F(X?)<=g(X), g is
continuous and monotone increasing with respect to < and the pair {F, g} is
commuting. Also suppose that either
(a) F is continuous or
(b) (X, d, <) isregular.
If there exist two elements Xq, Yo€X with

gxo < F(Xo,y0) and gyo > F(yo, Xo).
Then F and g have a coupled coincidence point.
Now, we derive the result without mixed monotone property of F.
Corollary 28. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F:X?—X be an increasing mapping with respect to < and
for each £>0, there exists 6(¢)>0 such that
(d(x, u) + d(y,v)

<
& 2

> < e+ 6(¢),

implies

d(F(X, y), F(u, V)) + d(F(y, x), F(v, u)) <.
5 .

(15)

for all x, y, u, veéX, where x<u and yz=v. Also suppose that either
(a) F is continuous or
(b) (X, d, <) is regular.
If there exist two elements Xq, Yo€X with
Xo < F(Xo,¥0) and yo = F(yo, Xo)-
Then F has a coupled fixed point.
Example 29. Suppose X=R, furnished with the usual metric d:XxX—[0, +o0) with
the natural ordering of real numbers <. Let F, G:X*xX—X be defined as

x2_ 2
Foy) =43 1*2¥
0,ifx<y,
and
_(x?2—yllifx>y,
G(X’Y)_{ 0,ifx <y,

First, we shall show that the mappings F and G satisfy the contractive condition of
Theorem 24. Let x, y, u, veX such that G(x, y)<G(u, v) and G(y, x)=G(v, u), such
that
. < d(G(X, y), G(u, V)) + d(G(y, x), G(v, u))
- 2

< e+ 6(¢),

that is,
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e < (1) [1x2 — y?| + |u? — v2|] < £+ 8(¢).

2
Then
<d(F(x, ), F(u,v)) + d(F(y,x), F(v, u)))
2
14 [|/x2 — y2 uZ — v2 2 — x2 v2 — 2
-0 (5 (=) ()
X2 — y? u? — 2
“\"3 )\ 3 ‘
< (3) 02—yl + a2 = 2]
S(g)(s+8(s))<s.

Thus the contractive condition of Theorem 24 is satisfied for all x, y, u, veX.
Moreover, like in [12], all the other conditions of Theorem 24 are satisfied and {F,
G} have a coincidence point z=(0, 0).

4. Application to integral equations

As an application of the results constructed in previous section, we study the
existence of the solution to a Fredholm nonlinear integral equation. We shall
consider the following integral equation

b
X(p) = j (K (p, @) + K2(p, )[f(a, x(@)) + g(0,x(@)]dq + h(p), (16)

for all pel=[a, b].

Let ® denote the set of all functions 0:[0, +o0)—[0, +o0) satisfying

(i) O is non-decreasing,

(iie) O(p)=p.

Assumption 30. We assume that the functions K;, K, f, g fulfill the following
conditions:

(i) Ki(p, 9)=0 and K, (p, q)<0 for all p, q€l.

(ii) There exist the positive numbers A, u and 6€® such that for all x, ye R with
xzY, the following conditions hold:

0<f(q,x) —f(qy) <2A6(x—y), (17)
—ub(x—y) < %(q, x) —g(qy) <0. (18)
(iii) max {&, u}supper [, (K1(p, @) — Ka2(p, q)) dq < (1/6). (19)

Definition 31 [22]. A pair (a, B)eX? with X=C(l, R), where C(I, R) denote the set
of all continuous functions from I to R, is called a coupled lower-upper solution of
(16) if, for all pel,
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b
a(p) < f Ki(p, 9)[f(q, a(q)) + g(q, B(q))]dq

+ff Ki(p, )[f(q, B(q)) + g(q, a(q))]dq + h(p),
and

b
B(p) = J Ki(p, 9)[f(q, B(q)) + g(q, a(q))]dq

a
+f,f Ka(p, @) [f(q, a(q)) + g(q, B(q))]dq + h(p)

Theorem 32. Consider the integral equation (16) with K;, K,eC(Ixl, R), f,
geC(IxR, R) and heC(l, R). Suppose that there exists a coupled lower-upper
solution (a, B) of (16) and Assumption 30 is satisfied. Then the integral equation
(16) has a solution in C(I, R).
Proof. Consider X=C(l, R), the natural partial order relation, that is, for x, yeC(l,
R),

_ _ x<yex(p)=<y(p),vpEL _
Obviously X is a complete metric space with respect to the sup metric

d(x,y) = supper|x(p) — y(p)I-
Now take the following partial order on XxX: for (X, y), (U, V)EXxX,

xy) < (u,v) © x(p) < u(p) andy(p) = v(p),Vp € L.
Define the mapping F:XxX—X, for all p€l, by
b

Fxy)(p) = f Ki(p, @)[f(q,x(q)) + g(q,y(q))]dq

a

b
+J, Ka(p, D[f(q,y(@)) + g(q,x(q))]dq + h(p).
It is easy to see, like in [12], that F is increasing. Let X, y, u, veX with x3u and
Y=<V, such that

e < (YO < ¢ 4 5(e). (20)
Now
Fx y)(p) — F(u, v)(p)
=f; K2 (p, ) [(f(a x(@) = (g, u(@)) - (e, v(@) - g(a.y(@))] dq
-ff Kz (p, @) [(f(q, v(q)) — f(q, y(@))) — (8(a, x(q)) — 8(q, u(q)))]dq.
Thus, by using (17) and (18), we have
Fx y)(p) — F(u,v)(p)

b
< f Ki(p, D)[26(x(q) —u(q)) + u6(v(q) —y(q))]dq
-ff Kao(p, ) [A8(v(q) —y(q)) + ub(x(q) — u(q))]dq. (21)
Since the function 6 is non-decreasing and x:=u, y<v, we have
8(x(q) —u(q)) = O(supgerlx(q) —u(q)]) = 6(d(x ),

0(v(q) —y(@) = 8(supger|v(q@) —y(@]) = 6(d(y,v)).
Hence by (21), in view of the fact that K,(p, q)<0, we obtain
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[FG,y) () — F(u, v)(p)|
<[, Ka(p, ) [A8(d(x, W) + p6(d(y, v))]dg
-J;; Ka(p, D[AB(A(y, v)) + pO(d(x, u))]dq
<[, Ka(p, ) [max{}, j}6(d(x, u)) + max{2, p}6(d(y, v))1dq

b
-J, Kz(p, @)[max{}, p}6(d(y, v)) + max{}, u}6(d(x, u))]dq,
as all the quantities on the right hand side of (21) are non-negative. Now, taking the
supremum with respect to p, by using (19), we get

d(F(x,y), F(u,v))

b
< max{}, pjsuppe f (K1(p, @) — Kz(p, 9))dq. [6(d(x, w)) + 8(d(y, V)]
< OGO

6
Thus

d(F(x,y), F(u,v)) < ZAEDIEOY)
Similarly

8(d(xu))+68(d(y.v))
d(F(y,x),F(v,u)) < . .

Combining them, we get
d(F(x,y), F(u,v)) + d(F(y,x), F(v,u))

2
< 8(d(xu)+6dlyv)) (22)

6
Now, since 8 is non-decreasing, we have
0(d(x,u)) < 6(d(x,u) +d(y,v)),
8(d(y,v)) < 8(d(x,u) +d(y,v)),

which implies, by (iig), that
8(d(x,u)) +6(d(y, v))

2
<0(d(x,u) +d(y,v)) <d(x,u) +d(y,v).

Hence
QUM < (1) [d(x, ) + d(y, v)] (23)
Thus by (20), (22) and (23), we have
d(F(X, y), F(u, V)) + d(F(y, x), F(v, u))
2

< (%) [d(x,w) + d(y, V)]

< (g) (e+8(e) <¢

which is the contractive condition (15) of Corollary 30. Now, let (a, B)EXxX be a
coupled upper-lower solution of (16), then we have a(p)<F(a, B)(p) and B(p)=F( B,
a)(p), for all pel, which shows that all hypothesis of Corollary 30 are satisfied.
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This proves that F has a coupled fixed point (X, y)eXxX which is the solution in
X=C(l, R) of the integral equation (16).

Remark 33. Using the same criterion that can be used in [18-20, 25, 35, 37] we
can obtain tripled, quadruple and in general, multidimensional coincidence point
theorems from Theorem 24.
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PE3IOME

[IpuBenem TeopeMy O COBNAJAECHWM TOYEK JUI (-HEYOBIBAIOMIMX OTOOpaXKEHWH,

YZIOBIIETBOPSIIOMINX 0000IIEHHOMY cokpameHnio Mewnpa-Kumiepa Ha ymopsiioYeHHBIX
METPUYECKHX MIPOCTPAHCTBAX. Hcnons3sys MOy YEHHBINA pe3ymbTar, MBI
MIPOIEMOHCTPUPYEM (OPMHUPOBAHHUE CBS3aHHOTO pE3yNbTaTa TOYKH COBMAICHHS IS
0000IIeHHON COBMeCTHMOW mapsl oToOpaxkeHuid. [lomydyaem pemieHHe HEIHHEHHOTO
HUHTErpaJibHOT'O YPaBHCHU A (Dpe[lFOJ'ILMa, yTOOBI IIOKA3aTh OJIE3HOCTH HAIIIETO pe3yibTara,
a TakkKe npuBecTH npumep. Hamm pesynpraTbl 0000LIAIOT, M3MEHSIOT, YJIy4IIalOT H
000TamanT HECKOIBKO U3BECTHBIX PE3yIbTAaTOB.
Karouesbie cnoBa: Touka coBHaJeHUs, B COYETAaHUU TOYKH COBIAJEHUE, 0000IIEHHOE
cokpamenne Meunpa-Kunepa, ymopsgoueHHOE MeTpUuYeckoe IpocTpaHcTBo, O-
COBMEcCTHMasi, 0000IIEHHas: COBMECTUMOCTD, J-HeyObIBarolee OTOOpakeHNE, CMEIIaHHOE
MOHOTOHHOE 0TOOpaXeHNE, KOMMYTHPYIOIIEEe OTOOpaKeHHE.
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